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Large language models, based on
the transtormer architecture, are
the first Al models to understanad
language, our medium tor
encoding all human knowledge.
The size, performance and wide
applicability of these models
have led researchers to begin

naming them foundation models.

Test scores of Al systems on various capabilities
relative to human performance

Reading comprehension
B |mage recognition
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Source: Our World in Data, Kiela et al. (2023). Note: For each capability,
the first year always shows a baseline of -100, even if better performance
vvvvvvvvvvv d later that year.
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The transtormer, a neural
network architecture
developed in 201/ capable
of building contextual
awareness as it processed
text, far outpertormed all
other architectures when it
came to learning language.

TEST LOSS

Transformers asymptotically outperform LSTMs
due to improved use of long contexts.
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Source: Kaplan, Jared et al. "Scaling Laws for Neural Language Models.”
ArXiv abs/2001.08361 (2020).

PER-TOKEN TEST LOSS

LSTM plateaus after <100 tokens.

Transformer improves through the whole context.
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Artificial intelligence: Performance on knowledge
tests vs. training computation

And vet, the "bitter lesson” of

Al research, as articulated by .
Rich Sutton, is that
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Source: Our World in Data, Epoch (2023). Note: The values for training

computation are estim ates and come wit h some uncertainty, especially for
models for which only minimal information has been disclosed, such as

GPT-4.; The Bitter Lesson, Rich Sutton.
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As a result, models have
grown massively in size,
increasing by tfour orders

of magnitude between
2018 and 2022.

Number of parameters of notable machine
learning models by sector, 2003-23
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3 digit addition Massive multitask language understanding
0.8 0.6
gt 0.5
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As models got larger, not
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only did their performance
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improve, but they began

Program synthesis

(6]

exhibiting emergent

behaviors — abilities they
were not taught explicitly.
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Source: Ganguli, Deep et al. “Predictability and Surprise in Large Generative Models.”
Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency (2022).
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Protein folding prediction accuracy
I—a rg e m O d e ‘ S a re I n C re a S I n g I y Median accuracy of predictions in the free modeling category for the best team in each year's Critical Assessment

capable of understanding

more than just language, but
the patterns underlying a

variety of complex domains. In
2021, DeepMind’s AlphaFold?2 — T

IS considered to have solved
the protein tolding problem.
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Recently, new models have

also pushed torward our
understanding of chemistry.

In 2025 DeepMind's GNoME
tool produced 2.2 million crystal
structures that didn't exist
before, including 380K that are
oredicted to be stable ana
usable in future technologies.

Source: Jenny Nuss/Berkeley Lab Note: Google DeepMind developed a deep learning tool called Graph
Networks for Materials Exploration, or GNoME. Researchers trained GNoME using workflows and data that
were developed over a decade by the Materials Project, and improved the GNoME algorithm through active
learning. GNoME researchers ultimately produced 2.2 million crystal structures, including 380,000 that they are
adding to the Materials Project and predict are stable, making them potentially useful in future technologies.
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Instruction relevance Corabinag Task affordances with
with LLMs CHAERD Value Functions
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Source: Ahn, Michael et al. “Do As | Can, Not As | Say: Grounding Language in
Robotic Affordances.” Conference on Robot Learning (2022).
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However, there are a few
major headwinds impeding
the continued exponential
scaling of large language
foundation models. The
nrst is the decreasing
availability ot high-quality
language data.

Projections of data usage
(for high-quality language data)

Number of words (log)

Median date data is exhausted Median date data is exhausted
(compute extr.) (trend extr.)

107

2022 2023 2024 2025 2026

B Extrapolation based on compute - - Stock of data (90% Cl)
W Extrapolation from trend -+ Stock of data (median)
Source: Epoch (2022), Pablo Villalobos, Jaime Sevilla, Lennart Heim, Tamay

Besiroglu, Marius Hobbhahn, and Anson Ho. ‘Will We Run out of Data? An
Analysis of the Limits of Scaling Datasets in Machine Learning’. ArXiv
[Cs.LG], 2022. arXiv. http://arxiv.org/abs/2211.04325.
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growing cost of training

larger models due to

the increasing scale of

compute required.

Al models
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Source: Artificial Intelligence Index Report 2024, Stanford HAI, Epoch (2023).
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Third is the increasing
amount of energy required
to run ever larger models.
Already, Al could be on track
to consume as much
electricity as all of Irelanq, i.e.
29.3 terawatt-hours per year.

Estimated energy consumption per request
for various Al-powered systems

Wh per request, in comparison to a standard Google search

10

Google search ChatGPT BLOOM

Al-powered Al-powered
Google search Google search
(New State Research) (SemiAnalysis)
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The story of improving
computation is a story ot
miniaturization.

Progress of miniaturisation

With comparison of sizes of semiconductor manufacturing process nodes with some microscopic objects
and visible light wavelengths

10 pm 10 ym (1971) e.g. Intel 8008

3 um (1975) e.g. Intel 8088

1.5 um (1982) e.g. Intel 80286

1 pm (1985) e.g. Intel 80386
800 nm (1989) e.g. P5 Pentium 60 MHz

600 nm (1994) e.g. Motorola PowerPC 601

350 nm (1995) e.g. Pentium Il Klamath
250 nm (1998) e.g. AMD K6-2
180 nm (1999) e.g. Coppermine E

130 nm (2000) e.g. PowerPC 7447

100 nm
90 nm (2002) e.g. VIA C7

65 nm (2006) e.g. Core Duo
45 nm (2008) e.g. Core 2 (Wolfdale)

32 nm (2010) e.g. Core i3 (Clarkdale)

22 nm (2012) e.g. Core i7 (Ivy Bridge)

14 nm (2014) e.g. Core M (Broadwell)

10 nm 10 nm (2017)

1970 1980 1990 2000 2010

Source: Progress of miniaturisation, and comparison of sizes of
semiconductor manufacturing process nodes with some microscopic objects
and visible light wavelengths; Cmglee, CC BY-SA 3.0, via Wikimedia Common.
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However, continued
Mminiaturization Is
increasingly costly.

Costs of developing smaller process technologies
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As a result, the cost per
transistor has stopped
talling. In fact, it has begun
to gradually increase.
"‘Moore's Law is dead,” said
Jensen Huang in 2022,
adding "the idea that the
chip is going to go down in
orice is a story of the past.

(Gate cost trend
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Source: Marvell 2020 Investor Day Presentation, via Doug O’Laughlin;
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As miniaturization reached
its limits, everything from
clock speeds to energy
efficiency and single-thread
performance have stalled.
Chip architects began
adding more cores to
improve CPU performance.

47 years of microprocessor trend data
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There are still i mmense —merging designs for smaller transistors
etficiency benefits from
keeping computation as
physically close together as
possible. This is why, despite
the growing costs, tabs
continue to research how to

scale down transistors further

— with the goal now at Tnm.

Source: Fei, Wenwen & Trommer, Jens & Lemme, Max & Mikolajick, Thomas
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For computation that can be
orocessed in parallel, like
matrix multiplication requiread
for Al training, GPUs have
delivered a 1000x increase in

pertormance over single-
threaded CPUs.
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1000X in 10 years

1980 1990

Source: NVIDIA, 2023 Investor Presentation.
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Single-chip inference performance -
1000X in 10 years

4500.00

- H100

miniaturization, the industry

Without tailwinds from

3000.00

has looked elsewhere to find

, 2500.00

improvements in performance,

FP16
1500.00 HMMA A100

like improved architecture and & Y Yy

1000.00 | bz
IMMA

larger processors. — e s |,

V100 261.00
K20X M40 P100 125.00

o 3.94 6.84 21.20

///////////////////////////////////////////////////////////////



TECHNOLOGICAL EDGES IT. COMPUTE / GPUS

The rate of GPU performance
Improvement Is Nnow on par

with Moore's Law, doubling in
pertormance every two years.

14

B Our data (2x every 2.46 years)

- B Moore’s law slope (2x every 2.00 years)

M Huang’s law slope (2x every 1.08 years)

Vio anchors report slope (2x every 2.50 years)

1» ™ Empirical CPU slope (2x every 2.32 years)
B Top FLOPs/dollar GPUs (2x every 2.95 years)
ML GPUs (2x every 2.07 years)
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—mpirical GPU FLOP/s per dollar
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Source: Marius Hobbhahn and Tamay Besiroglu (2022), "Trends in GPU
Price-Performance”.
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To supply the needs ot Al,
data center GPU shipments
are expected to nearly triple
over the next nve years.
While Moore's Law might be
over, the era of GPUs has
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Source: Aaron Rackers at Wells Fargo Equity Research via Next Platform.



